| 
 
 
| Question 1209229:  The real numbers a and b satisfy a - b = 2 and a^3 - b^3 = 8.
 (a) Find all possible values of ab.
 (b) Find all possible values of a + b.
 (c) Find all possible values of a and b.
 Found 2 solutions by  ikleyn, math_tutor2020:
 Answer by ikleyn(52879)
      (Show Source): 
You can put this solution on YOUR website! . The real numbers a and b satisfy a - b = 2 and a^3 - b^3 = 8.
 (a) Find all possible values of ab.
 (b) Find all possible values of a + b.
 (c) Find all possible values of a and b.
 ~~~~~~~~~~~~~~~~~
 
 
 
Factor a^3 - b^3
    a^3 - b^3 = (a-b)*(a^2 + ab + b^2).
Then from the second equation 
    (a-b)*(a^2 + ab + b^2) = 8.
Replace here a-b by 2, based on the first equation.  You will get
    a^2 + ab + b^2 = 4.
Substitute here b = a-2.  You will get
    a^2 + a*(a-2) + (a-2)^2 = 4,
    a^2 + a^2 - 2a + a^2 - 4a + 4 = 4,
    3a^2 - 6a = 0,
    3a(a-2) = 0.
It gives two roots for "a" :  a = 0  and  a = 2.
If  a= 0,  then  b = a-2 = -2.
If  a= 2,  then  b = a-2 =  0.
So, the solutions for the given system of equations are these pairs  (a,b) = (0,-2)  and  (a,b) = (2,0).
Having this, you can compute everything what you want / (you need) and answer all the questions.
Solved.
 
 
 
Answer by math_tutor2020(3817)
      (Show Source): 
You can put this solution on YOUR website! Part 1) Find all possible values of ab.
 
 (a-b)^3
 = (a-b)(a-b)^2
 = (a-b)(a^2-2ab+b^2)
 = a(a^2-2ab+b^2)-b(a^2-2ab+b^2)
 = (a^3-2a^2b+ab^2)+(-a^2b+2ab^2-b^3)
 = a^3 + (-2a^2b-a^2b) + (ab^2+2ab^2) - b^3
 = a^3 - 3a^2b + 3ab^2 - b^3
 = a^3-b^3-3ab(a-b)
 
 In short,
 (a-b)^3 = a^3-b^3-3ab(a-b)
 You can skip over the previous paragraph if you have this formula memorized or written on a notecard.
 
 Then we apply the equations a-b = 2 and a^3-b^3 = 8 to isolate ab.
 So,
 (a-b)^3 = a^3-b^3-3ab(a-b)
 (a-b)^3 = a^3-b^3-3ab(a-b)
 (2)^3 = 8-3ab(2)
 8 = 8 - 6ab
 -6ab = 8-8
 -6ab = 0
 ab = 0/(-6)
 ab = 0
 
 --------------------------------------------------------------------------
 
 Part 2) Find all possible values of a+b.
 
 c = a+b
 c^2 = a^2+2ab+b^2
 c^2 = a^2+2*0+b^2 ..... plug in ab = 0
 c^2 = a^2+b^2
 
 Use the difference of cubes factoring formula
 a^3-b^3 = (a-b)(a^2+ab+b^2)
 a^3-b^3 = (a-b)(a^2+0+b^2)
 a^3-b^3 = (a-b)(a^2+b^2)
 a^3-b^3 = (a-b)c^2
 8 = 2c^2
 c^2 = 8/2
 c^2 = 4
 c = sqrt(4) or c = -sqrt(4)
 c = 2 or c = -2
 a+b = 2 or a+b = -2
 
 --------------------------------------------------------------------------
 
 Part 3) Find all possible values of a and b.
 
 
 a-b = 2
 a = b+2
 
 a^3 - b^3 = 8
 (b+2)^3 - b^3 = 8
 (b^3+3*b^2*2+3*b*2^2+2^3) - b^3 = 8
 6b^2+12b+8 = 8
 6b^2+12b = 0
 6b(b+2) = 0
 6b = 0 or b+2 = 0
 b = 0 or b = -2
 
 If b = 0, then a = b+2 = 0+2 = 2
 One ordered pair solution is (a,b) = (2,0)
 
 If b = -2, then a = b+2 = -2+2 = 0
 The other ordered pair solution is (a,b) = (0,-2)
 
 Note that you can do part 3 first to determine a,b
 Then it's very easy to compute ab and a+b.
 
 --------------------------------------------------------------------------
 --------------------------------------------------------------------------
 Answers:
 
 ab = 0
 a+b = 2 or a+b = -2
 (a,b) = (2,0) or  (a,b) = (0,-2)
 
 | 
  
 | 
 |