Question 1209163: if f ^(2 n)(x) + ((f (x) - 2))^(2 n) = x ^(2 n), n \[Element] N , then (dx)/(d (f (x))) at f (x) = 1 is ....
Answer by ikleyn(52879) (Show Source):
You can put this solution on YOUR website! .
if f ^(2 n)(x) + ((f (x) - 2))^(2 n) = x ^(2 n), n \[Element] N , then (dx)/(d (f (x))) at f (x) = 1 is ....
~~~~~~~~~~~~~~~~~~~~~~~
So, n is a natural number, i.e. positive integer number.
Differentiate the given equation. You will get
(2n)*f^(2n-1)(x)*f'(x) + (2n)*(f(x)-2)^(2n-1)*f'(x) = (2n)*x^(2n-1).
Cancel factor (2n) in both sides
f^(2n-1)(x)*f'(x) + (f(x)-2)^(2n-1)*f'(x) = x^(2n-1).
Take f'(x) out the parentheses as a common factor
df
---- * [f^(2n-1)(x) + (f(x)-2)^(2n-1)] = x^(2n-1).
dx
Then
dx f^(2n-1)(x) + (f(x)-2)^(2n-1))
---- = ----------------------------------
df x^(2n-1)
Take it at f(x) = 1
dx 1^(2n-1) + (1-2)^(2n-1) 1 - 1
---- = -------------------------- = ----------.
df x^(2n-1) x^(2n-1)
dx
So, if x =/= 0, then ---- = 0.
df
But x definitely is not zero, since, otherwise, in the original equation left side would be
= 1 + 1 = 2,
while the right side would be = 0.
dx
Thus, the final conclusion is that ---- = 0. ANSWER
df
Solved.
|
|
|