SOLUTION: T(t)=70+(180-70)e^-(5/46)(2)

Algebra ->  Polynomials-and-rational-expressions -> SOLUTION: T(t)=70+(180-70)e^-(5/46)(2)      Log On


   



Question 1201613: T(t)=70+(180-70)e^-(5/46)(2)
Found 2 solutions by greenestamps, math_tutor2020:
Answer by greenestamps(13203) About Me  (Show Source):
You can put this solution on YOUR website!


(1) The function is not clear. The sequence of characters "e^-(5/46)(2)" can't be interpreted by the software on this forum; and I don't know what is is supposed to mean.

(2) You didn't ask a question....

Re-post, showing the function clearly, and asking your question


Answer by math_tutor2020(3817) About Me  (Show Source):
You can put this solution on YOUR website!

This appears to be a Newton's Law of Cooling problem.

One template for these types of problems would be
T+=+a+%2B+%28b-a%29%2Ae%5E%28k%2Ax%29
where
a = ambient temperature
b = object's temperature
e = the special constant 2.71828...
k = some other constant
T = Temperature at time x

It looks like you have:
a = 70
b = 180
k = -5/46
x = 2

So,
T+=+a+%2B+%28b-c%29%2Ae%5E%28k%2Ax%29

T+=+70+%2B+%28180-70%29%2Ae%5E%28-%285%2F46%29%2A2%29%5E%22%22

T+=+158.507656415782
This is the approximate temperature of the object at x = 2 units of time
I'm assuming you have the correct k value.