SOLUTION: prove that, for square matrices A and B, AB=BA if and only if(A-B)(A+B)=A²-B².

Algebra ->  Matrices-and-determiminant -> SOLUTION: prove that, for square matrices A and B, AB=BA if and only if(A-B)(A+B)=A²-B².       Log On


   



Question 1201590: prove that, for square matrices A and B, AB=BA if and only if(A-B)(A+B)=A²-B².

Found 2 solutions by math_tutor2020, ikleyn:
Answer by math_tutor2020(3816) About Me  (Show Source):
You can put this solution on YOUR website!

The template P if and only if Q breaks into two pieces
  • If P, then Q
  • If Q, then P

For this problem,
AB = BA if and only if (A-B)(A+B) = A^2-B^2
breaks into
  • If AB = BA, then (A-B)(A+B) = A^2-B^2
  • If (A-B)(A+B) = A^2-B^2, then AB = BA


-----------------------------------

Part 1)
If AB = BA, then (A-B)(A+B) = A^2-B^2

We'll start with (A-B)(A+B) and try to reach A^2-B^2 through use of AB = BA

(A-B)(A+B) = A(A+B)-B(A+B)
(A-B)(A+B) = (A^2+AB)+(-BA-B^2)
(A-B)(A+B) = (A^2+AB)+(-AB-B^2) ... use AB = BA
(A-B)(A+B) = A^2+(AB-AB)-B^2
(A-B)(A+B) = A^2+0*AB-B^2
(A-B)(A+B) = A^2+0-B^2
(A-B)(A+B) = A^2-B^2

We have proven that if AB=BA, then (A-B)(A+B) leads to A^2-B^2

In other words, if AB=BA, then (A-B)(A+B) = A^2-B^2

-----------------------------------


Part 2)

If (A-B)(A+B) = A^2-B^2, then AB = BA


(A-B)(A+B) = A^2-B^2
A(A+B)-B(A+B) = A^2-B^2
(A^2+AB)+(-BA-B^2) = A^2-B^2
A^2+(AB-BA)-B^2 = A^2-B^2
(AB-BA)-B^2 = -B^2
AB-BA = 0
AB = BA

The second portion of the "if and only if" statement has been confirmed.

-----------------------------------

Therefore, overall we can say AB = BA if and only if (A-B)(A+B) = A^2-B^2
Matrices A and B must be square, and the same size.


Answer by ikleyn(52771) About Me  (Show Source):
You can put this solution on YOUR website!
.

(A-B)*(A+B) = A*A - B*A + A*B - B*B = (A^2 - B^2) + (A*B - B*A).


From this identity, which is valid for all matrices ALWAYS,  you can easily conclude that  

    (A-B)*(A+B) = A^2 - B^2  if and only if  A*B - B*A = 0.


It is the same as to say that 

    (A-B)*(A+B) = A^2 - B^2  if and only if  A*B = B*A.

Solved.