Karen the trainer has two solo workout plans that she offers her clients: Plan A and Plan B. Each client does either one or the other (not both). On Monday there were
8
clients who did Plan A and
3
who did Plan B. On Tuesday there were
2
clients who did Plan A and
5
who did Plan B. Karen trained her Monday clients for a total of
15
hours and her Tuesday clients for a total of
8
hours. How long does each of the workout plans last?
~~~~~~~~~~~~~~
Your formatting is terrible, and to read it is a torture.
Write equation as you read the problem
8a + 3b = 15 hours (1)
2a + 5b = 8 hours (2)
To solve, multiply equation (2) by 4; then subtract from equation (1) (the Elimination method).
You will get then, after canceling, simple equation for single unknown
3b - 20b = 15 - 32,
or
-17b = - -17,
b = 1.
Knowing "b", you find "a" from equation (2)
2a + 5*1 = 8,
2a = 8 - 5 = 3
a = 3/2 = 1.5.
ANSWER. 1 hour for Plan A and 1.5 hours for Plan B.
Solved.
Please do not post in this format anymore.