SOLUTION: The cumulative distribution function of a random variable X is given by 0, t<−2,   1/8, −2≤t<−1,  FX(t)= 1/2, −1≤t<1,   2/3, 1≤t<3,

Algebra ->  Probability-and-statistics -> SOLUTION: The cumulative distribution function of a random variable X is given by 0, t<−2,   1/8, −2≤t<−1,  FX(t)= 1/2, −1≤t<1,   2/3, 1≤t<3,       Log On


   



Question 1197984: The cumulative distribution function of a random variable X is given by
0, t<−2,


1/8, −2≤t<−1, 
FX(t)= 1/2, −1≤t<1, 

2/3, 1≤t<3,
  1 , t ≥ 3 . (a) Determine probability mass function (PMF) of X.
(b) Compute P(X(X + 1) > 0).

Answer by ikleyn(52915) About Me  (Show Source):
You can put this solution on YOUR website!
.

Your post is in unreadable format.


Comment from student :   How can I make it more readable?  Can I send an email or something?


My response :   Do not copy/paste from your source:   it  DOES  NOT  WORK  at this forum.

Print using your keyboard,  instead.  It is the only way to provide a correct input at this forum.