SOLUTION: Suppose we roll a fair die two times. How many different samples are there? I figured this as 36. List each of the possible samples and compute the mean. I completed an excel sh

Algebra ->  Probability-and-statistics -> SOLUTION: Suppose we roll a fair die two times. How many different samples are there? I figured this as 36. List each of the possible samples and compute the mean. I completed an excel sh      Log On


   



Question 1197411: Suppose we roll a fair die two times.
How many different samples are there? I figured this as 36.
List each of the possible samples and compute the mean. I completed an excel sheet for this and the mean is 3.5
Compute the mean and the standard deviation of each distribution and compare them.
Mean
Standard deviation of individual rolls
Standard deviation of sample means
I put all the figures in an excel spreadsheet and used the formula for standard deviation for a population and a sample. The calculation showed population standard deviation as 2.415 and the sample standard deviation as 1.225. This shows not correct in the assignment and I am lost. Could you please help/explain how to get the standard deviation of individual rolls and the standard deviation of the sample means?

Answer by ewatrrr(24785) About Me  (Show Source):
You can put this solution on YOUR website!

a fair six-sided die rolled  {1,2,3,4,5,6} outcomes
 μ= %281+%2B+6%29%2F2 = 3.5
Variance: %286%5E2-1%29%2F12+=+%2835%2F12%29 = 2.9167
Standard deviation = sqrt%28variance%29  σ=1.7078 Standard deviation of individual rolls

Standard deviation of sample means
1	3.5	-2.5	6.25
2	3.5	-1.5	2.25
3	3.5	-0.5	0.25
4	3.5	0.5	0.25
5	3.5	1.5	2.25
6	3.5	2.5	6.25
		0	17.5
		  	1.870828693   √(17.5/5)