| 
 
 
 
Question 1196138:  Given P = ( 3 0 2    
2 1 2  
 -3 -4 -6 )  
a) if ( 2 6 n  
-2 m 9 
0 -2 1 ) is the cofactor of matrix P, find the values of m and without finding a new cofactor matrix. 
b) find the adjoint matrix of P hence, find P-1 (identity P)  
                     
 Answer by ElectricPavlov(122)      (Show Source): 
You can  put this solution on YOUR website! **a) Finding the values of m and n**
 
* **Understand Cofactor Matrix:** 
    * The cofactor of an element in a matrix is calculated by: 
        * Finding the minor (determinant of the submatrix obtained by removing the row and column of the element). 
        * Multiplying the minor by (-1)^(i+j), where i and j are the row and column indices of the element.
 
* **Determine Cofactors:** 
    * We are given the following cofactors: 
        * Cofactor of the element '3' (row 1, column 1) = 2  
        * Cofactor of the element '0' (row 1, column 2) = 6 
        * Cofactor of the element '2' (row 1, column 3) = n 
        * Cofactor of the element '2' (row 2, column 1) = -2 
        * Cofactor of the element '1' (row 2, column 2) = m 
        * Cofactor of the element '2' (row 2, column 3) = 9 
        * Cofactor of the element '-3' (row 3, column 1) = 0 
        * Cofactor of the element '-4' (row 3, column 2) = -2 
        * Cofactor of the element '-6' (row 3, column 3) = 1
 
* **Calculate Cofactors:** 
    * **Cofactor of '3':**  
        * Minor: det([ 1  2 ; -4 -6 ]) = 1*(-6) - 2*(-4) = -6 + 8 = 2 
        * Cofactor: (-1)^(1+1) * 2 = 1 * 2 = 2 (Matches the given value)
 
    * **Cofactor of '0':**  
        * Minor: det([ 2  2 ; -1 -6 ]) = 2*(-6) - 2*(-1) = -12 + 2 = -10 
        * Cofactor: (-1)^(1+2) * (-10) = -1 * (-10) = 10  
        * **Therefore, n = 10**
 
    * **Cofactor of '2':**  
        * Minor: det([ 2  1 ; -1 -4 ]) = 2*(-4) - 1*(-1) = -8 + 1 = -7 
        * Cofactor: (-1)^(1+3) * (-7) = 1 * (-7) = -7  
        * **Therefore, n = -7**
 
    * **Cofactor of '2':**  
        * Minor: det([ 0  2 ; -4 -6 ]) = 0*(-6) - 2*(-4) = 8 
        * Cofactor: (-1)^(2+1) * 8 = -1 * 8 = -8  
        * **Therefore, m = -8**
 
**b) Find the Adjoint Matrix of P and P-1**
 
* **Find the Cofactor Matrix:**  
    * Using the calculated cofactors and the remaining cofactors (which you can calculate similarly), construct the cofactor matrix:
 
      [ 2  6  -7  
       -2 -8  9  
        0 -2  1 ]
 
* **Find the Adjoint Matrix:**  
    * The adjoint of a matrix is the transpose of its cofactor matrix. 
 
      [ 2  -2  0  
        6  -8  -2  
       -7   9   1 ]
 
* **Find the Determinant of P:** 
    * det(P) = 3 * det([ 1  2 ; -4 -6 ]) - 0 * det([ 2  2 ; -1 -6 ]) + 2 * det([ 2  1 ; -1 -4 ])  
    * det(P) = 3 * 2 - 0 * (-10) + 2 * (-7)  
    * det(P) = 6 - 14  
    * det(P) = -8
 
* **Find the Inverse of P (P-1):** 
    * P-1 = (1/det(P)) * adj(P)  
    * P-1 = (-1/8) * [ 2  -2  0  
                          6  -8  -2  
                         -7   9   1 ]
 
    * P-1 = [ -1/4  1/4   0  
              -3/4   1   1/4  
               7/8  -9/8  -1/8 ]
 
**Therefore:**
 
* **m = -8** 
* **n = -7** 
* **The adjoint matrix of P is:**  
    [ 2  -2  0  
     6  -8  -2  
    -7   9   1 ] 
* **The inverse of P (P-1) is:**  
    [ -1/4  1/4   0  
      -3/4   1   1/4  
       7/8  -9/8  -1/8 ] 
 
  | 
 
  
 
 |   
 
 |   
 |  |