| 
 
 
| Question 1195865:  Answer each of the following as True or False justifying your answers:
 If S and K are n×n matrices such that S is symmetric and K is skew symmetric, then |S+K|=|S-K|. 	If |■(a&a&a-1&c@a&a&a-1&b@a&a&a+1&b@a&a+1&b&c)|=0, then a=b=c=0. 	If A,B and C are non-singular n×n matrices such that AB=C, BC=A and CA=B, then |ABC|=1. 	If A and B are 3×3 matrices, then AB-AB^T is a non-singular matrix. 	The vector U=(2,-1,-1) in R^3 is a linear combination of the vectors V_1=(1,2,7),V_2=(2,5,17) and V_3=(-1,2,5).
 Answer by ikleyn(52879)
      (Show Source): 
You can put this solution on YOUR website! . Answer each of the following as True or False justifying your answers:
 
 (a) If S and K are n×n matrices such that S is symmetric and K is skew symmetric,
 then |S+K|=|S-K|.
 
 (b) If |■(a&a&a-1&c@a&a&a-1&b@a&a&a+1&b@a&a+1&b&c)|=0, then a=b=c=0.
 
 (c) If A,B and C are non-singular n×n matrices such that AB=C, BC=A and CA=B, then |ABC|=1.
 
 (d) If A and B are 3×3 matrices, then AB-AB^T is a non-singular matrix.
 
 (e) The vector U=(2,-1,-1) in R^3 is a linear combination of the vectors
 V_1=(1,2,7), V_2=(2,5,17) and V_3=(-1,2,5).
 ~~~~~~~~~~~~~~~~~~~~~~~~
 
 
 
(c)  We are given for non-singular nxn-matrices A, B and C
         AB = C,  BC = A, CA = B.
    
     Multiply all three equations (both sides).  You will get then
         A*B*B*C*C*A = A*B*C.
     It implies for determinants
         |A|*|B|*|B|*|C|*|C|*|A| = |A|*|B|*|C|,  or
         |A*B*C|^2 = |A*B*C|.
     Since |ABC| =/= 0 (due to non-singularity), we can reduce/cancel common factor |A*B*C| in both sides.
     We then get  |A*B*C| = 1, QED.
     ANSWER.  The statement is TRUE.
(d)  The statement is FALSE.
     To prove that it is false, consider A= 0, B= 0  (zero matrices).
     
(e)  We want to check if there are real numbers "a", "b" and "c" such that
        U = a*V_1 + b*V_2 + c*V_3.
     It is the same as to check, if this system of three linear equations has a solution
     for real numbers "a", "b" and "c"
        1*a +  2*b - 1*c =  2,   (E1)
        2*a +  5*b + 2*c = -1,   (E2)
        7*a + 17*b + 5*c = -1.   (E3)
     Notice that for left sides of equations (E1), (E2), (E3) we have their linear combination 1*E1 + 3*E2 = E3.
     For right side terms,  1*E1 + 3*E2 = 1*2 + 3*(-1) = 2 - 3 = -1  is the same as E3.
     So, we can expect that the system has a solution.
     Now, I am laizy to check it directly, and we live in XXI century - so I use an online solver 
          https://www.emathhelp.net/calculators/linear-algebra/gauss-jordan-elimination-calculator/
     It confirms that the system (E1), (E2), (E3) has the solution a= 12, b= -5, c= 0.
     ANSWER.  Vector U=(2,-1,-1) in R^3 is a linear combination of the vectors 
              V_1=(1,2,7), V_2=(2,5,17) and V_3=(-1,2,5):  U = 12*U_1 - 5*V_2.
Parts  (c),  (d)  and  (e)  are solved,  answered and explained.
 
 
 
 | 
  
 | 
 |