Question 1195640: Let
S={1,2,3,...,18,19,20} be the universal set.
Let sets A and B be subsets of S, where:
Set A={1,2,4,5,7,10,13,15,16,17}
Set B={1,3,6,9,10,12,16,17,18}
Determine the following:
n(A)=
n(¯A)=
n(B)=
n(A∩B)=
n(A∪B)=
Found 2 solutions by Boreal, ikleyn: Answer by Boreal(15235) (Show Source):
You can put this solution on YOUR website! n=number and there are 10 elements in A, and there are 10 elements on n(-A).
There are 9 elements in B.
The intersection is {1,10,16,17}
The union is {1,2,3,4,5,6,7,9,10,12,13,15,16,17,18}
There are 19 elements in both combined, 4 are the same, that leaves 15 in the union which are shown above.
Answer by ikleyn(52775) (Show Source):
You can put this solution on YOUR website! .
The level of complexity of this and similar problems is the same as
to move/(to transfer)/(to shift) matches from one box to another.
|
|
|