Question 1194517:  1. Given: Z1= 2-2i , Z2= 3i and Z3= -3+i . Solve analytically and illustrate graphically. (Illustrate all 3 vectors and the result vector.) 
 (a) Z1-Z2+Z3 (b) Z3-Z2-Z1
 
2. Using the same given as Problem 1. Find: 
 (c) Z1*Z3   (d) Z3xZ2   (e) the acute angle between Z1 and Z2 
 Answer by proyaop(69)      (Show Source): 
You can  put this solution on YOUR website! **1. Analytical Solutions**
 
**(a) Z1 - Z2 + Z3**
 
* Z1 - Z2 + Z3 = (2 - 2i) - 3i + (-3 + i)  
* Z1 - Z2 + Z3 = 2 - 2i - 3i - 3 + i  
* Z1 - Z2 + Z3 = -1 - 4i
 
**(b) Z3 - Z2 - Z1**
 
* Z3 - Z2 - Z1 = (-3 + i) - 3i - (2 - 2i)  
* Z3 - Z2 - Z1 = -3 + i - 3i - 2 + 2i  
* Z3 - Z2 - Z1 = -5 
 
**2. Graphical Illustration**
 
* **Represent complex numbers as vectors:** 
    * Z1 = 2 - 2i: Vector from origin to point (2, -2) in the complex plane. 
    * Z2 = 3i: Vector from origin to point (0, 3) in the complex plane. 
    * Z3 = -3 + i: Vector from origin to point (-3, 1) in the complex plane.
 
* **Perform vector operations graphically:** 
    * **(a) Z1 - Z2 + Z3:**  
        * Draw Z1.  
        * Draw -Z2 (vector Z2 in the opposite direction).  
        * Draw Z3. 
        * The vector sum Z1 - Z2 + Z3 is the resultant vector obtained by connecting the tail of Z1 to the head of Z3 after drawing -Z2. 
 
    * **(b) Z3 - Z2 - Z1:** 
        * Draw Z3. 
        * Draw -Z2. 
        * Draw -Z1 (vector Z1 in the opposite direction). 
        * The vector sum Z3 - Z2 - Z1 is the resultant vector obtained by connecting the tail of Z3 to the head of -Z1 after drawing -Z2.
 
**3. Further Calculations**
 
**(c) Z1 * Z3**
 
* Z1 * Z3 = (2 - 2i) * (-3 + i)  
* Z1 * Z3 = -6 + 2i + 6i - 2i²  
* Z1 * Z3 = -6 + 8i + 2 (since i² = -1) 
* Z1 * Z3 = -4 + 8i
 
**(d) Z3 x Z2**
 
* The cross product is not defined for complex numbers in the same way it is for vectors in 3D space. 
 
**(e) Acute Angle between Z1 and Z2**
 
* Find the magnitudes of Z1 and Z2: 
    * |Z1| = √(2² + (-2)²) = √8 = 2√2 
    * |Z2| = √(0² + 3²) = 3
 
* Find the dot product of Z1 and Z2: 
    * Z1 • Z2 = (2 * 0) + (-2 * 3) = -6
 
* Use the dot product formula: 
    * cos(θ) = (Z1 • Z2) / (|Z1| * |Z2|) 
    * cos(θ) = -6 / (2√2 * 3)  
    * cos(θ) = -√2 / 2 
    * θ = 135° 
 
* The acute angle between Z1 and Z2 is 180° - 135° = 45°.
 
**Note:**
 
* Graphical representation can be done using a complex plane (Argand diagram).  
* You can use graphing software or tools to plot the complex numbers and visualize the vector operations.
 
I hope this comprehensive explanation helps! 
 
  | 
 
  
 
 |   
 
 |