SOLUTION: If f(x)= square root 2x^2-1 and g(x)=x^1/2, find and simplify a) (f+g)(x) b) (f-g)(x) c) (f*g)(x) d) (f/g)(x) e) (g/f)(x) f) (g*f)(x)=f(f(x)) g) (g*f)(x)=g(f(x)) h) Determ

Algebra ->  Trigonometry-basics -> SOLUTION: If f(x)= square root 2x^2-1 and g(x)=x^1/2, find and simplify a) (f+g)(x) b) (f-g)(x) c) (f*g)(x) d) (f/g)(x) e) (g/f)(x) f) (g*f)(x)=f(f(x)) g) (g*f)(x)=g(f(x)) h) Determ      Log On


   



Question 1190909: If f(x)= square root 2x^2-1 and g(x)=x^1/2, find and simplify
a) (f+g)(x)
b) (f-g)(x)
c) (f*g)(x)
d) (f/g)(x)
e) (g/f)(x)
f) (g*f)(x)=f(f(x))
g) (g*f)(x)=g(f(x))
h) Determine whether g and f are inverse functions.

Answer by Alan3354(69443) About Me  (Show Source):
You can put this solution on YOUR website!
If f(x)= square root 2x^2-1 and g(x)=x^1/2, find and simplify
a) (f+g)(x)
Add them.
---------------
b) (f-g)(x)
Subtract g)(x) from f(x)
----------------
c) (f*g)(x)
Multiply them.
--------------------
d) (f/g)(x)
e) (g/f)(x)
f) (g*f)(x)=f(f(x))
g) (g*f)(x)=g(f(x))
h) Determine whether g and f are inverse functions.
=========================
Too many problems in one post.