SOLUTION: Prove the formula ∫ cscxcotxdx = −cscx + C

Algebra ->  Customizable Word Problem Solvers  -> Evaluation -> SOLUTION: Prove the formula ∫ cscxcotxdx = −cscx + C      Log On

Ad: Over 600 Algebra Word Problems at edhelper.com


   



Question 1190607: Prove the formula ∫ cscxcotxdx = −cscx + C
Answer by Alan3354(69443) About Me  (Show Source):
You can put this solution on YOUR website!
Prove the formula ∫ cscxcotxdx = −cscx + C
------
∫ cscxcotxdx = ∫ (cos(x)/sin^2(x) dx
u = sin(x)
du = cos(x)
----
---> ∫ du/u^2 = ∫ u^-2 du = -u^-1 + c
= -1/sin(x) + c
= -csc(x) + C