| 
 
 
| Question 1189364:  1.Solve the following equations:
 (i) ln x + ln(x + 4) = ln(x + 6)
 (ii) 7^x+3 = e^x
 
 Answer by Alan3354(69443)
      (Show Source): 
You can put this solution on YOUR website! 1.Solve the following equations: (i) ln x + ln(x + 4) = ln(x + 6)
 ln(x*(x+4)) = ln(x+6)
 x^2 + 4x = x+6
 x^2 + 3x = 6
 x^2 + 3x + 2.25 = 8.25
 (x + 1.5)^2 = 8.25
 x+1.5 = sqrt(33)/2, -sqrt(33)/2
 x = (-3 + sqrt(33))/2 =~ 1.37228
 The other "solution" is negative and is not valid due to the logarithm.
 =====================================
 (ii) 7^x+3 = e^x
 Is x the exponent of 7?
 Or x+3?
 If it's x+3:
 ----------------
 7^(x+3) = e^x
 ln(7^(x+3)) = ln(e^x)
 (x+3)*ln(7) = x
 x*ln(7) + 3ln(7) = x
 x*ln(7) + ln(343) = x
 x(ln(7) - 1) = -ln(343)
 x = -ln(343)/(ln(7) - 1)
 x =~ -6.1715
 -------------------------
 Check:
 e^x =~ 2.0881e-3  ----  (e-3 is scientific format *10^-3)
 7^-3.1715 =~ 2.0882e-3
 | 
  
 | 
 |