SOLUTION: prove that cosxcotx + sinx = cscx

Algebra ->  Trigonometry-basics -> SOLUTION: prove that cosxcotx + sinx = cscx      Log On


   



Question 118840: prove that cosxcotx + sinx = cscx
Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!
cosxcotx+%2B+sinx+=+cscx Start with the given equation



cosx%28cosx%2Fsinx%29+%2B+sinx+=+cscx Rewrite cotx as cosx%2Fsinx


cosx%28cosx%2Fsinx%29+%2B+%28sinx%2Fsinx%29sinx=+cscx Multiply sinx by sinx%2Fsinx


%28cosx%29%5E2%2Fsinx+%2B+%28sinx%29%5E2%2Fsinx=+cscx Combine the fractions



%28%28cosx%29%5E2%2B%28sinx%29%5E2%29%2Fsinx=+cscx Add the fractions


%281%29%2Fsinx=+cscx Rewrite %28cosx%29%5E2%2B%28sinx%29%5E2 as 1



+cscx=+cscx Rewrite %281%29%2Fsinx as cscx