Question 1181507:  Determine the absolute deviation and the coefficient of variation.
 
𝑦=[200.432 (±0.002)]^1/2 / log(20.42 × 10^15(±0.06)) 
 Answer by CPhill(1987)      (Show Source): 
You can  put this solution on YOUR website! Here's how to calculate the absolute deviation and coefficient of variation for the given expression:
 
**1. Calculate the value of y:**
 
y = sqrt(200.432) / log(20.42 × 10^15)  
y ≈ 14.157 / 15.310 
y ≈ 0.9246
 
**2. Calculate the uncertainty in y:**
 
To do this properly, we need to consider the uncertainties in both the numerator and the denominator. We'll use the formula for propagation of uncertainty through division:
 
(δy/y) = sqrt((δA/A)^2 + (δB/B)^2)
 
Where:
 
*   A = 200.432, δA = 0.002 
*   B = 20.42 × 10^15, δB = 0.06 × 10^15
 
First, find the relative uncertainties:
 
*   (δA/A) = 0.002 / 200.432 ≈ 0.00001 
*   (δB/B) = 0.06 × 10^15 / (20.42 × 10^15) ≈ 0.00294
 
Now, calculate the relative uncertainty in y:
 
(δy/y) = sqrt((0.00001)^2 + (0.00294)^2) 
(δy/y) ≈ 0.00294
 
Finally, calculate the absolute uncertainty in y:
 
δy = (δy/y) * y 
δy ≈ 0.00294 * 0.9246 
δy ≈ 0.00272
 
**3. Express the result:**
 
y = 0.9246 ± 0.00272
 
**4. Calculate the coefficient of variation:**
 
Coefficient of variation = (δy / y) * 100% 
Coefficient of variation = (0.00272 / 0.9246) * 100% 
Coefficient of variation ≈ 0.294%
 
**Therefore:**
 
*   **Absolute deviation:** ± 0.00272 
*   **Coefficient of variation:** ≈ 0.294% 
 
  | 
 
  
 
 |   
 
 |