SOLUTION: How to solve - \frac{ 1 }{ 3 } \log_{ 3 }({ \frac{ 1 }{ 4 } }) + \log_{ 3 }({ x }) = - \log_{ \left( \frac{ 1 }{ 3 } \right) }({ \sqrt[ 3 ]{ x } })

Algebra ->  Equations -> SOLUTION: How to solve - \frac{ 1 }{ 3 } \log_{ 3 }({ \frac{ 1 }{ 4 } }) + \log_{ 3 }({ x }) = - \log_{ \left( \frac{ 1 }{ 3 } \right) }({ \sqrt[ 3 ]{ x } })       Log On


   



Question 1181191: How to solve - \frac{ 1 }{ 3 } \log_{ 3 }({ \frac{ 1 }{ 4 } }) + \log_{ 3 }({ x }) = - \log_{ \left( \frac{ 1 }{ 3 } \right) }({ \sqrt[ 3 ]{ x } })
Found 2 solutions by MathLover1, MathTherapy:
Answer by MathLover1(20850) About Me  (Show Source):
You can put this solution on YOUR website!
assuming you have this:








root%283%2C2%29%2F%282x%29=%281%2F4%29%2Aroot%283%2Cx%29

root%283%2C2%29=%282x%2F4%29%2Aroot%283%2Cx%29

root%283%2C2%29=%28x%2F2%29%2Aroot%283%2Cx%29

2root%283%2C2%29=x%2Aroot%283%2Cx%29.............both sides raise to power of 3

%282root%283%2C2%29%29%5E3=%28x%2Aroot%283%2Cx%29%29%5E3

2%5E3%2A2=x%5E3%2Ax

2%5E4=x%5E4

2=x

Answer by MathTherapy(10552) About Me  (Show Source):
You can put this solution on YOUR website!

How to solve - \frac{ 1 }{ 3 } \log_{ 3 }({ \frac{ 1 }{ 4 } }) + \log_{ 3 }({ x }) = - \log_{ \left( \frac{ 1 }{ 3 } \right) }({ \sqrt[ 3 ]{ x } })

If you REALLY need help, you'll need to CONFIRM that the above-equation is correct.