SOLUTION: The area of the region under the curve given by the function f(x) = 2x2 + 6 on the interval [0, b] is 36 square units, where b > 0.
The value of b is ?
a. 1
b. 2
c. 3
d. 4
Algebra ->
Surface-area
-> SOLUTION: The area of the region under the curve given by the function f(x) = 2x2 + 6 on the interval [0, b] is 36 square units, where b > 0.
The value of b is ?
a. 1
b. 2
c. 3
d. 4
Log On
Question 1180435: The area of the region under the curve given by the function f(x) = 2x2 + 6 on the interval [0, b] is 36 square units, where b > 0.
The value of b is ?
a. 1
b. 2
c. 3
d. 4 Found 2 solutions by ikleyn, MathLover1:Answer by ikleyn(52864) (Show Source):
You can put this solution on YOUR website! .
The area of the region under the curve given by the function f(x) = 2x2 + 6 on the interval [0, b] is 36 square units, where b > 0.
The value of b is ?
a. 1
b. 2
c. 3
d. 4
~~~~~~~~~~~~~
The area under the curve is the integral of the given function from 0 to value of "b".
This integral is equal to .
So we need find "b" from equation
= 36,
or
= 108.
The function on the left is monotonically increasing function of "b",
so if we guess the value, it is the unique solution.
Easy guessing gives b = 3 as the solution. ANSWER