SOLUTION: Prove \frac{\cosh\left(x\right)}{1+\left(\sinh\left(x\right)\right)^{2}} = \frac{2e^{x}}{1+\left(e^{2x}\right)}
Algebra
->
Trigonometry-basics
-> SOLUTION: Prove \frac{\cosh\left(x\right)}{1+\left(\sinh\left(x\right)\right)^{2}} = \frac{2e^{x}}{1+\left(e^{2x}\right)}
Log On
Algebra: Trigonometry
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Trigonometry-basics
Question 1180099
:
Prove \frac{\cosh\left(x\right)}{1+\left(\sinh\left(x\right)\right)^{2}} = \frac{2e^{x}}{1+\left(e^{2x}\right)}
Answer by
ikleyn(52894)
(
Show Source
):
You can
put this solution on YOUR website!
.
Unreadable format.
This site / forum accepts posts in plain text format, ONLY.