SOLUTION: Prove \frac{\cosh\left(x\right)}{1+\left(\sinh\left(x\right)\right)^{2}} = \frac{2e^{x}}{1+\left(e^{2x}\right)}

Algebra ->  Trigonometry-basics -> SOLUTION: Prove \frac{\cosh\left(x\right)}{1+\left(\sinh\left(x\right)\right)^{2}} = \frac{2e^{x}}{1+\left(e^{2x}\right)}      Log On


   



Question 1180099: Prove \frac{\cosh\left(x\right)}{1+\left(\sinh\left(x\right)\right)^{2}} = \frac{2e^{x}}{1+\left(e^{2x}\right)}
Answer by ikleyn(52894) About Me  (Show Source):
You can put this solution on YOUR website!
.

Unreadable format.


This site / forum accepts posts in plain text format,   ONLY.