| 
 
 
| Question 1179864:  I. Use an ordinary proof (not conditional or indirect) to solve the following arguments.
 
 1)
 1. I v (N • F)
 2. I ⊃ F /F
 
 
 2)
 1. P ⊃ ~M
 2. C ⊃ M
 3. ~L v C
 4. (~P ⊃ ~E) • (~E ⊃ ~C)
 5. P v ~P /~L
 
 
 3)
 1. O ⊃ (Q • N)
 2. (N Ú E) ⊃ S / O ⊃ S
 
 Answer by CPhill(1987)
      (Show Source): 
You can put this solution on YOUR website! Let's break down each argument step-by-step using ordinary proofs: **1) Argument:**
 1.  I v (N • F)
 2.  I ⊃ F / F
 **Proof:**
 3.  ~I ∨ F  (2, Implication)
 4.  I ∨ (N • F) (1, Copy)
 5.  ~I ∨ F  (3, Copy)
 6.  F ∨ ~I (5, Commutation)
 7.  F ∨ (N • F) (4, Resolution, 6)
 8.  F ∨ (N • F) (7, Copy)
 9.  F ∨ N (8, Distribution)
 10. F (9, Simplification)
 **Therefore, F is proven.**
 **2) Argument:**
 1.  P ⊃ ~M
 2.  C ⊃ M
 3.  ~L v C
 4.  (~P ⊃ ~E) • (~E ⊃ ~C)
 5.  P v ~P / ~L
 **Proof:**
 6.  ~P ∨ ~M (1, Implication)
 7.  ~C ∨ M (2, Implication)
 8.  ~P ⊃ ~E (4, Simplification)
 9.  ~E ⊃ ~C (4, Simplification)
 10. P ∨ ~P (5, Copy)
 11. P (10, Tautology)
 12. ~M (6, 11, Modus Ponens)
 13. ~C (7, 12, Modus Tollens)
 14. ~L (3, 13, Disjunctive Syllogism)
 **Therefore, ~L is proven.**
 **3) Argument:**
 1.  O ⊃ (Q • N)
 2.  (N ∨ E) ⊃ S / O ⊃ S
 **Proof:**
 3.  ~O ∨ (Q • N) (1, Implication)
 4.  N ∨ E ⊃ S (2, Copy)
 5.  ~O ∨ Q (3, Simplification)
 6.  ~O ∨ N (3, Simplification)
 7.  N ∨ E (6, Addition)
 8.  S (4, 7, Modus Ponens)
 9.  ~O ∨ S (6, 8, Hypothetical Syllogism)
 10. O ⊃ S (9, Implication)
 **Therefore, O ⊃ S is proven.**
 
 | 
  
 | 
 |