You can
put this solution on YOUR website!
Verify the identity:
tan(2tan-1x)= 2 tan(tan-1x + tan-1x3)
Let tan-1x = A and let tan-1x3 = B
Then tanA = x and tanB = x3
and the identity to verify becomes:
tan(2A)= 2tan(A + B)
2tanA
On the left side use the identity: tan(2A) = ———————————
1 - tan2A
tanA + tanB
On the right side use the identity: tan(A+B) = ————————————————
1 - tanA·tanB
2tanA tanA + tanB
——————————— = 2·————————————————
1 - tan²A 1 - tanA·tanB
Since tanA = x and tanB = x3, the above becomes
2x x + x3
———————— = 2·——————————
1 - x2 1 - x·x3
Factor the numerator on the right getting x(1 + x)
Multiply x·x3 getting x4
2x x(1 + x2)
———————— = 2·————————————
1 - x2 1 - x4
or putting the 2 factor on the right in the numerator
2x 2x(1 + x2)
———————— = ————————————
1 - x2 1 - x4
Factor the denominator on the right as the
difference of two perfect squares:
2x 2x(1 + x2)
———————— = ——————————————————
1 - x2 (1 - x2)(1 + x2)
Cancel the (1 + x2)'s on the right:
1
2x 2x(1 + x2)
———————— = ——————————————————
1 - x2 (1 - x2)(1 + x2)
1
2x 2x
———————— = ——————————
1 - x2 1 - x2
Edwin