SOLUTION: Question 1 1. ~(U v R) 2. (~R v N) ⊃ (P * H) 3. Q ⊃ ~H ~Q Question 2 1. (P v U) ⊃ ~L 2. (I v W) ⊃ ~K 3. L • K / ~(U v W) Question 3 1. R ⊃ (C

Algebra ->  Proofs -> SOLUTION: Question 1 1. ~(U v R) 2. (~R v N) ⊃ (P * H) 3. Q ⊃ ~H ~Q Question 2 1. (P v U) ⊃ ~L 2. (I v W) ⊃ ~K 3. L • K / ~(U v W) Question 3 1. R ⊃ (C       Log On


   



Question 1179180: Question 1
1. ~(U v R)
2. (~R v N) ⊃ (P * H)
3. Q ⊃ ~H ~Q
Question 2
1. (P v U) ⊃ ~L
2. (I v W) ⊃ ~K
3. L • K / ~(U v W)
Question 3
1. R ⊃ (C v M)
2 ~(I v C)
3. ~(A v M) / ~R
could you possibly explain how you got the answer??

Answer by Edwin McCravy(20060) About Me  (Show Source):
You can put this solution on YOUR website!
There is no conclusion given for "Question 1".
Can't do that one for you.
-----------------------------------------------

 Question 2
 1. (P v U) ⊃ ~L
 2. (I v W) ⊃ ~K
 3. L • K            / ~(U v W)

 4. L              3, simplification
 5. ~~L            4, double negation
 6. ~(P v U)       1,5, modus tollens
 7. ~P • ~U        6, DeMorgan's law
 8. ~U • ~P        7, commutation
 9. ~U             8, simplification
10. K • L          3, commutation
11. K              10, simplification
12. ~~K            11, double negation
13. ~(I v W)       2,12, modus tollens
14. ~I • ~W        13, DeMorgan's law
15. ~W • ~I        14, commutation
16. ~W             15, simplification
17. ~U • ~W        9,17, conjunction
18. ~(U v W)       17, DeMorgan's law


 Question 3
 1. R ⊃ (C v M)
 2 ~(I v C)
 3. ~(A v M)      / ~R

 4. ~I • ~C                2, DeMorgan's law
 5. ~C • ~I                4, commutation
 6. ~C                     5, simplification
 7. ~A • ~M                3, DeMorgan's law
 8. ~M • ~A                7, commutation
 9. ~M                     8, simplification
10. ~C • ~M                6,9 conjunction
11. ~(C v M)               10, DeMorgan's law
12. ~R                     1,11, modus tollens

Edwin