Question 1177401:  Let X be a random variable with pdf f (x) = kx^2 where 0 ≤ x ≤ 1. 
(a) Find k. 
(b) Find E(X) and Var(X). 
(c) Find MX(t). Using the mgf, find E(X).
 
Thank you  
 Answer by CPhill(1987)      (Show Source): 
You can  put this solution on YOUR website! Let's solve this problem step-by-step.
 
**(a) Find k**
 
Since f(x) is a probability density function (pdf), the integral of f(x) over its domain must equal 1:
 
* ∫[0, 1] kx² dx = 1
 
Integrate:
 
* [ (kx³/3) ] from 0 to 1 = 1 
* (k/3) - (0) = 1 
* k/3 = 1 
* k = 3
 
Therefore, f(x) = 3x² for 0 ≤ x ≤ 1.
 
**(b) Find E(X) and Var(X)**
 
1.  **Find E(X):**
 
    * E(X) = ∫[0, 1] x * f(x) dx 
    * E(X) = ∫[0, 1] x * (3x²) dx 
    * E(X) = ∫[0, 1] 3x³ dx 
    * E(X) = [ (3x⁴/4) ] from 0 to 1 
    * E(X) = (3/4) - (0) 
    * E(X) = 3/4
 
2.  **Find E(X²):**
 
    * E(X²) = ∫[0, 1] x² * f(x) dx 
    * E(X²) = ∫[0, 1] x² * (3x²) dx 
    * E(X²) = ∫[0, 1] 3x⁴ dx 
    * E(X²) = [ (3x⁵/5) ] from 0 to 1 
    * E(X²) = (3/5) - (0) 
    * E(X²) = 3/5
 
3.  **Find Var(X):**
 
    * Var(X) = E(X²) - [E(X)]² 
    * Var(X) = 3/5 - (3/4)² 
    * Var(X) = 3/5 - 9/16 
    * Var(X) = (48 - 45) / 80 
    * Var(X) = 3/80
 
**(c) Find MX(t) and Use the mgf to Find E(X)**
 
1.  **Find MX(t) (Moment Generating Function):**
 
    * MX(t) = E(e^(tX)) = ∫[0, 1] e^(tx) * f(x) dx 
    * MX(t) = ∫[0, 1] e^(tx) * (3x²) dx
 
    We use integration by parts twice. Let u = 3x², dv = e^(tx) dx. 
    Then du = 6x dx, v = e^(tx)/t.
 
    * MX(t) = [ 3x²e^(tx)/t ] from 0 to 1 - ∫[0, 1] 6xe^(tx)/t dx 
    * MX(t) = 3e^t/t - (6/t) ∫[0, 1] xe^(tx) dx
 
    Now, integrate ∫xe^(tx) dx by parts again. Let u = x, dv = e^(tx) dx. 
    Then du = dx, v = e^(tx)/t.
 
    * ∫xe^(tx) dx = [ xe^(tx)/t ] from 0 to 1 - ∫[0, 1] e^(tx)/t dx 
    * ∫xe^(tx) dx = e^t/t - [ e^(tx)/t² ] from 0 to 1 
    * ∫xe^(tx) dx = e^t/t - (e^t/t² - 1/t²) 
    * ∫xe^(tx) dx = e^t/t - e^t/t² + 1/t²
 
    Substitute back into MX(t):
 
    * MX(t) = 3e^t/t - (6/t) [ e^t/t - e^t/t² + 1/t² ] 
    * MX(t) = 3e^t/t - 6e^t/t² + 6e^t/t³ - 6/t³ 
    * MX(t) = (3te^t - 6e^t + 6e^t/t - 6/t²)/t 
    * MX(t) = (3t^2e^t - 6te^t + 6e^t - 6)/t^3
 
2.  **Find E(X) using MX(t):**
 
    * E(X) = MX'(0) 
    * MX'(t) = d/dt [(3t²e^t - 6te^t + 6e^t - 6)/t^3]
 
    We can use L'Hopital's rule or series expansions to find the limit.
 
    * E(X) = lim(t→0) MX'(t) 
    * Using L'Hopital's rule three times, or the series expansion of e^t, we find: 
    * E(X) = lim(t→0) (3t^2e^t+6te^t+3e^t-6e^t-6te^t+6e^t)/3t^2 
    * E(X) = lim(t→0) (3t^2e^t+3e^t)/3t^2 
    * E(X) = lim(t→0) (3t^2e^t+6te^t+6e^t)/6t 
    * E(X) = lim(t→0) (3t^2e^t+12te^t+6e^t)/6 
    * E(X) = 6/8 = 3/4
 
**Answers**
 
* **(a) k = 3** 
* **(b) E(X) = 3/4, Var(X) = 3/80** 
* **(c) MX(t) = (3t²e^t - 6te^t + 6e^t - 6)/t^3, E(X) = 3/4** 
 
  | 
 
  
 
 |   
 
 |