SOLUTION: Construct a truth table for ( p ---> ~ r ) v ( ~ q ^ r )

Algebra ->  Rational-functions -> SOLUTION: Construct a truth table for ( p ---> ~ r ) v ( ~ q ^ r )       Log On


   



Question 1175639: Construct a truth table for ( p ---> ~ r ) v ( ~ q ^ r )
Found 2 solutions by Solver92311, Edwin McCravy:
Answer by Solver92311(821) About Me  (Show Source):
You can put this solution on YOUR website!

   p   q   ~q   r   ~r   (p -> ~r)  (~q ^ r)  [(p -> ~r) V (~q ^ r)}

   T   T   F    T   F       F           F                F
   T   T   F    F   T       T           F                T
   T   F   T    T   F       F           T                T
   T   F   T    F   T       T           F                T
   F   T   F    T   F       T           F                T
   F   T   F    F   T       T           F                T
   F   F   T    T   F       T           T                T
   F   F   T    F   T       T           F                T  


John

My calculator said it, I believe it, that settles it

From
I > Ø

Answer by Edwin McCravy(20056) About Me  (Show Source):
You can put this solution on YOUR website!

 ( p ---> ~ r ) v ( ~ q ^ r ) 

Start with this.  

| p | q | r | -q | -r | p ---> ~r | ~q ^ r || ( p ---> ~r ) v ( ~q ^ r ) |
|---|---|---|----|----|-----------|------------------------------------------
| T | T | T |    |    |           |        ||                            | 
| T | T | F |    |    |           |        ||                            | 
| T | F | T |    |    |           |        ||                            | 
| T | F | F |    |    |           |        ||                            | 
| F | T | T |    |    |           |        ||                            | 
| F | T | F |    |    |           |        ||                            | 
| F | F | T |    |    |           |        ||                            | 
| F | F | F |    |    |           |        ||                            | 

Fill in the ~q and the ~r column with the opposite truth values of the q and r
columns:

| p | q | r | -q | -r | p ---> ~r | ~q ^ r || ( p ---> ~r ) v ( ~q ^ r ) |
|---|---|---|----|----|-----------|------------------------------------------
| T | T | T |  F |  F |           |        ||                            | 
| T | T | F |  F |  T |           |        ||                            | 
| T | F | T |  T |  F |           |        ||                            | 
| T | F | F |  T |  T |           |        ||                            | 
| F | T | T |  F |  F |           |        ||                            | 
| F | T | F |  F |  T |           |        ||                            | 
| F | F | T |  T |  F |           |        ||                            | 
| F | F | F |  T |  T |           |        ||                            | 

To fill in the next column, p ---> ~r, using the rule for --->.
Put T except in case of "T ---> F", [T on the left and F on the right
of --->) and put F in that case. (Notice that only the 1st and 3rd rows have T
under p and F under ~r.  So put F's in those two rows and T's everywhere else:

| p | q | r | -q | -r | p ---> ~r | ~q ^ r || ( p ---> ~r ) v ( ~q ^ r ) |
|---|---|---|----|----|-----------|------------------------------------------
| T | T | T |  F |  F |    F      |        ||                            | 
| T | T | F |  F |  T |    T      |        ||                            | 
| T | F | T |  T |  F |    F      |        ||                            | 
| T | F | F |  T |  T |    T      |        ||                            | 
| F | T | T |  F |  F |    T      |        ||                            | 
| F | T | F |  F |  T |    T      |        ||                            | 
| F | F | T |  T |  F |    T      |        ||                            | 
| F | F | F |  T |  T |    T      |        ||                            | 

To fill in the next column, ~q^r, using the rule for ^.
Put F except in case of "T ---> T", [T on the both sides of ^] and put T in
that case. (Notice that only the 3rd and 7th rows have T under both ~q and r.
So put T's in those two rows and F's everywhere else:

| p | q | r | ~q | ~r | p ---> ~r | ~q ^ r || ( p ---> ~r ) v ( ~q ^ r ) |
|---|---|---|----|----|-----------|------------------------------------------
| T | T | T |  F |  F |    F      |    F   ||                            | 
| T | T | F |  F |  T |    T      |    F   ||                            | 
| T | F | T |  T |  F |    F      |    T   ||                            | 
| T | F | F |  T |  T |    T      |    F   ||                            | 
| F | T | T |  F |  F |    T      |    F   ||                            | 
| F | T | F |  F |  T |    T      |    F   ||                            | 
| F | F | T |  T |  F |    T      |    T   ||                            | 
| F | F | F |  T |  T |    T      |    F   ||                            | 

To fill in the last column, (p--->~r)v(~q^r), using the rule for v.
Put T except in case of "F ---> F", [F on the both sides of v] and put F in
that case. (Notice that only the 1st row has F under both p--->~r and ~qvr.  So
put F's on the first row and T's everywhere else:

| p | q | r | ~q | ~r | p ---> ~r | ~q ^ r || ( p ---> ~r ) v ( ~q ^ r ) |
|---|---|---|----|----|-----------|------------------------------------------
| T | T | T |  F |  F |    F      |    F   ||               F            | 
| T | T | F |  F |  T |    T      |    F   ||               T            | 
| T | F | T |  T |  F |    F      |    T   ||               T            | 
| T | F | F |  T |  T |    T      |    F   ||               T            | 
| F | T | T |  F |  F |    T      |    F   ||               T            | 
| F | T | F |  F |  T |    T      |    F   ||               T            | 
| F | F | T |  T |  F |    T      |    T   ||               T            | 
| F | F | F |  T |  T |    T      |    F   ||               T            | 

Edwin