| 
 
 
| Question 1173154:   A person wants to deposit $10,000 per year for 6 years. If interest is earned at the rate of
 10 percent per year, compute the amount to which the deposits will grow by the end of the 6 years if:
 (a) Deposits of $10,000 are made at the end of each year with interest compounded annually.
 (b) Deposits of $5,000 are made at the end of each 6-month period with interest com pounded semiannually.
 (e) Deposits of $2,500 are made at the end of every quarter with interest compounded
 Answer by CPhill(1987)
      (Show Source): 
You can put this solution on YOUR website! Let's break down each scenario and calculate the future value of the deposits: **(a) Annual Deposits of $10,000**
 * **Deposit (PMT):** $10,000
 * **Interest Rate (r):** 10% or 0.10
 * **Number of Years (n):** 6
 * **Compounding:** Annually
 We'll use the future value of an ordinary annuity formula:
 FV = PMT * [((1 + r)^n - 1) / r]
 FV = $10,000 * [((1 + 0.10)^6 - 1) / 0.10]
 FV = $10,000 * [(1.10^6 - 1) / 0.10]
 FV = $10,000 * [(1.771561 - 1) / 0.10]
 FV = $10,000 * [0.771561 / 0.10]
 FV = $10,000 * 7.71561
 FV = $77,156.10
 **(b) Semi-annual Deposits of $5,000**
 * **Deposit (PMT):** $5,000
 * **Annual Interest Rate (r):** 10% or 0.10
 * **Semi-annual Interest Rate (i):** 0.10 / 2 = 0.05
 * **Number of Years (n):** 6
 * **Number of Periods (N):** 6 * 2 = 12
 * **Compounding:** Semi-annually
 FV = PMT * [((1 + i)^N - 1) / i]
 FV = $5,000 * [((1 + 0.05)^12 - 1) / 0.05]
 FV = $5,000 * [(1.05^12 - 1) / 0.05]
 FV = $5,000 * [(1.795856 - 1) / 0.05]
 FV = $5,000 * [0.795856 / 0.05]
 FV = $5,000 * 15.917127
 FV = $79,585.64
 **(c) Quarterly Deposits of $2,500**
 * **Deposit (PMT):** $2,500
 * **Annual Interest Rate (r):** 10% or 0.10
 * **Quarterly Interest Rate (i):** 0.10 / 4 = 0.025
 * **Number of Years (n):** 6
 * **Number of Periods (N):** 6 * 4 = 24
 * **Compounding:** Quarterly
 FV = PMT * [((1 + i)^N - 1) / i]
 FV = $2,500 * [((1 + 0.025)^24 - 1) / 0.025]
 FV = $2,500 * [(1.025^24 - 1) / 0.025]
 FV = $2,500 * [(1.808734 - 1) / 0.025]
 FV = $2,500 * [0.808734 / 0.025]
 FV = $2,500 * 32.34936
 FV = $80,873.40
 **Summary**
 * **(a)** $77,156.10
 * **(b)** $79,585.64
 * **(c)** $80,873.40
 
 | 
  
 | 
 |