Question 1170702:  Let M=[{0,-2},{4,6}]. Find formulas for the entries of Mn, where n is a positive integer. 
 Answer by CPhill(1987)      (Show Source): 
You can  put this solution on YOUR website! Let's find the formula for the entries of $M^n$, where $M = \begin{bmatrix} 0 & -2 \\ 4 & 6 \end{bmatrix}$.
 
**1. Find the Eigenvalues and Eigenvectors of M**
 
* **Characteristic Equation:** 
   det(M - λI) = 0 
   det( $\begin{bmatrix} -\lambda & -2 \\ 4 & 6-\lambda \end{bmatrix}$ ) = 0 
   (-λ)(6 - λ) - (-2)(4) = 0 
   -6λ + λ² + 8 = 0 
   λ² - 6λ + 8 = 0 
   (λ - 4)(λ - 2) = 0
 
* **Eigenvalues:** 
   λ₁ = 4 and λ₂ = 2
 
* **Eigenvectors:** 
    * For λ₁ = 4: 
       (M - 4I)v₁ = 0 
       $\begin{bmatrix} -4 & -2 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 
       -4x - 2y = 0 
       -2x - y = 0 
       y = -2x 
       Let x = 1, then y = -2. 
       v₁ = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$
 
    * For λ₂ = 2: 
       (M - 2I)v₂ = 0 
       $\begin{bmatrix} -2 & -2 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 
       -2x - 2y = 0 
       x + y = 0 
       y = -x 
       Let x = 1, then y = -1. 
       v₂ = $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$
 
**2. Form the Matrix P and Diagonal Matrix D**
 
* P = $\begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix}$ (matrix of eigenvectors) 
* D = $\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$ (diagonal matrix of eigenvalues)
 
**3. Find P⁻¹**
 
* det(P) = (1)(-1) - (1)(-2) = -1 + 2 = 1 
* P⁻¹ = (1/det(P)) $\begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$ = $\begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$
 
**4. Use the Formula Mⁿ = PDⁿP⁻¹**
 
* Dⁿ = $\begin{bmatrix} 4ⁿ & 0 \\ 0 & 2ⁿ \end{bmatrix}$
 
* Mⁿ = $\begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} 4ⁿ & 0 \\ 0 & 2ⁿ \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$
 
* Mⁿ = $\begin{bmatrix} 4ⁿ & 2ⁿ \\ -2(4ⁿ) & -2ⁿ \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$
 
* Mⁿ = $\begin{bmatrix} -4ⁿ + 2(2ⁿ) & -4ⁿ + 2ⁿ \\ 2(4ⁿ) - 2(2ⁿ) & 2(4ⁿ) - 2ⁿ \end{bmatrix}$
 
* Mⁿ = $\begin{bmatrix} -4ⁿ + 2^(n+1) & -4ⁿ + 2ⁿ \\ 2(4ⁿ) - 2^(n+1) & 2(4ⁿ) - 2ⁿ \end{bmatrix}$
 
**Formulas for the Entries:**
 
* Mⁿ₁₁ = -4ⁿ + 2^(n+1) 
* Mⁿ₁₂ = -4ⁿ + 2ⁿ 
* Mⁿ₂₁ = 2(4ⁿ) - 2^(n+1) 
* Mⁿ₂₂ = 2(4ⁿ) - 2ⁿ 
 
  | 
 
  
 
 |   
 
 |