SOLUTION: It takes Robert 9 hours longer to construct a fence than it takes Eldin. If they work together,
they can construct the fence in 20 hours. How long would it take each, working alon
Algebra ->
Rate-of-work-word-problems
-> SOLUTION: It takes Robert 9 hours longer to construct a fence than it takes Eldin. If they work together,
they can construct the fence in 20 hours. How long would it take each, working alon
Log On
Question 1170604: It takes Robert 9 hours longer to construct a fence than it takes Eldin. If they work together,
they can construct the fence in 20 hours. How long would it take each, working alone,
to construct the fence? Found 2 solutions by math_tutor2020, MathTherapy:Answer by math_tutor2020(3816) (Show Source):
You can put this solution on YOUR website!
x = time it takes Eldin to do the job on his own
x+9 = time it takes Robert to do the job on his own
x+9 is 9 hours longer compared to x
x is some positive real number.
If it takes x hours for Eldin to do the job alone, then his rate is 1/x jobs per hour. Robert's rate is 1/(x+9) jobs per hour if he works alone.
Their combined rate is 1/x + 1/(x+9)
This is equal to the combined rate 1/20 since they can get the job done in 20 hours if they work together. One worker must not slow the other down.
The equation we must solve is
1/x + 1/(x+9) = 1/20
Clear out the fractions by multiplying everything by the LCD 20x(x+9)
Doing so yields the following
1/x + 1/(x+9) = 1/20
20x(x+9)*1/x + 20x(x+9)*1/(x+9) = 20x(x+9)*1/20
20(x+9) + 20x = x(x+9)
From here let's expand everything out and then get everything to one side
20(x+9) + 20x = x(x+9)
20x + 180 + 20x = x^2 + 9x
40x + 180 = x^2 + 9x
0 = x^2 + 9x - 40x - 180
x^2 - 31x - 180 = 0
We have something of the form
ax^2 + bx + c = 0
With a = 1, b = -31, c = -180
Those three values can be plugged into the quadratic formula or
or
or
or
or
or
Since x must be positive, this rules out the second solution. It makes no sense to have x be negative.
The only practical solution is x = 36
It takes Eldin exactly x = 36 hours to do the job on his own
It takes Robert exactly x+9 = 36+9 = 45 hours to do the job on his own
You can put this solution on YOUR website!
It takes Robert 9 hours longer to construct a fence than it takes Eldin. If they work together, they can construct the fence in 20 hours. How long would it take each, working alone, to construct the fence?
Let time it takes Robert to do the job, be R
Then time it takes Eldin is: R - 9
Therefore, Robert can do of job in 1 hour, while Eldin can do of job in 1 hour
We then get the following equation:
20(R - 9) + 20R = R(R - 9) ------- Multiplying by LCD, 20R(R - 9)
(R - 45)(R - 4) = 0
Robert's time to complete job, alone: OR R = 4 (ignore)
Eldin's time to complete job, alone: