SOLUTION: The altitude drawn to the hypotenuse of a right triangle divides the hypotenuse into two segments, whose lengths are 8 inches and 18 inches. How long is the altitude?

Algebra ->  Customizable Word Problem Solvers  -> Geometry -> SOLUTION: The altitude drawn to the hypotenuse of a right triangle divides the hypotenuse into two segments, whose lengths are 8 inches and 18 inches. How long is the altitude?      Log On

Ad: Over 600 Algebra Word Problems at edhelper.com


   



Question 1157995: The altitude drawn to the hypotenuse of a right triangle divides the hypotenuse into
two segments, whose lengths are 8 inches and 18 inches. How long is the altitude?

Found 2 solutions by mananth, josmiceli:
Answer by mananth(16946) About Me  (Show Source):
Answer by josmiceli(19441) About Me  (Show Source):
You can put this solution on YOUR website!
Let the other legs of the right triangle =
+a+ and +b+
Let the altitude = +c+
------------------------------
One of the rt triangles:
(1) +8%5E2+%2B+c%5E2+=+a%5E2+
The other rt triangle:
(2) +18%5E2+%2B+c%5E2+=+b%5E2+
The original rt triangle:
(3) +a%5E2+%2B+b+%5E2+=+26%5E2+
---------------------------------
Plug (2) into (3)
(3) +a%5E2+%2B+18%5E2+%2B+c%5E2+=+26%5E2+
(3) +a%5E2+%2B+c%5E2+=+26%5E2+-+18%5E2+
(3) +a%5E2+%2B+c%5E2+=+676+-+324+
(3) +a%5E2+%2B+c%5E2+=+352+
and
(1) +a%5E2+-+c%5E2+=+64+
Add (1) and (3)
+2a%5E2+=+416++
+a%5E2+=+208+
and
(1) +8%5E2+%2B+c%5E2+=+a%5E2+
(1) +64+%2B+c%5E2+=+208+
(1) +c%5E2+=+208+-+64+
(1) +c%5E2+=+144+
(1) +c+=+12+
The altitude is 12 inches
-----------------------------
check:
(3) +a%5E2+%2B+b+%5E2+=+26%5E2+
(3) +208+%2B+b%5E2+=+676+
(3) +b%5E2+=+468+
and
(2) +18%5E2+%2B+c%5E2+=+b%5E2+
(2) +324+%2B+144+=+468+
(2) +468+=+468+
OK