SOLUTION: Roughly speaking, the standard deviation indicates how far, on average, the observations are from the mean. Do you think that for the population data set below the standard deviati

Algebra ->  Probability-and-statistics -> SOLUTION: Roughly speaking, the standard deviation indicates how far, on average, the observations are from the mean. Do you think that for the population data set below the standard deviati      Log On


   



Question 1156619: Roughly speaking, the standard deviation indicates how far, on average, the observations are from the mean. Do you think that for the population data set below the standard deviation will give a good indication of the typical deviation from the mean? Also, find the standard deviation. 2, 3, 4, 4, 5, 5, 6, 6, 100 What drawback of the standard deviation is illustrated by this example? Explain
Answer by Boreal(15235) About Me  (Show Source):
You can put this solution on YOUR website!
The mean will be skewed rightward by the value of 100.
The mean is 15, the sis 30.1 for this as a population
Most of the observations are within 1 sd of the mean.
The last is more than 2 ad s from the mean,
While many of the observations are within 1 sd of the mean, they are at the upper limit of that interval. Most of them should be clustered near the mean, typically. The sd is influenced heavily by outliers, since the square of the deviation of them is much larger.