Question 1146968: A wheel whose radius is 1 is placed so that its center is at (3, 2). A paint spot on the rim is found at (4, 2). The wheel is spun θ degrees in the counterclockwise direction. Now what are the coordinates of the paint spot? Please help me!
Found 2 solutions by Alan3354, josmiceli: Answer by Alan3354(69443) (Show Source):
You can put this solution on YOUR website! A wheel whose radius is 1 is placed so that its center is at (3, 2). A paint spot on the rim is found at (4, 2). The wheel is spun θ degrees in the counterclockwise direction. Now what are the coordinates of the paint spot?
-------------------
The x value is 3 + cos(theta)
The y value is 2 + sin(theta)
---
---> (3+cos(t),2+sin(t))
===================
PS Don't put a space after the comma.
(3,2) and (4,2)
Answer by josmiceli(19441) (Show Source):
You can put this solution on YOUR website! You can relocate the center back to ( 0,0 )
This operation is: ( x - 3, y - 2 ), so the paint
spot is now at ( 4 - 3, 2 - 2 ) = ( 1, 0 )
--------------------------
after rotating:
The y-value will be at:

The x-value will be at:

------------------------------------
Now you have to add ( 3,2 ) to ( cos(theta), sin(theta) )
to put the paint spot where it should be, so
( cos(theta) + 3 , sin(theta) + 2 ) are the
new coordinates of the paint spot
----------------------------------------
Get a 2nd opinion if you need to
|
|
|