|
Question 1141352: integrate sec^2x dx
Answer by rothauserc(4718) (Show Source):
You can put this solution on YOUR website! integral of sec^2 (x) dx = integral of 1/cos^2 (x) dx =
:
((sin^2 (x) + cos^2 (x))/cos^2 (x)) dx
:
I used the identity sin^2 (x) + cos^2 (x) = 1
:
Note the derivative of sin(x)/cos(x) = ((cos(x) * cos(x) - sin(x) * -sin(x))/cos^2 (x)) dx = ((cos^2 (x)+ sin^2 (x))/cos^2 (x)) dx = (1/cos^2 (x)) dx = sec^2 (x) dx
:
let u = tan(x) = sin(x)/cos(x)
:
du = (1/cos^2 (x)) dx, then
:
******************************************************************
integral of sec^2 (x) dx = integral of u du = u = tan(x) +constant
******************************************************************
:
|
|
|
| |