SOLUTION: Kevin and randy Muise have a jar containing 53 coins, all of which are eathir quarters or nickels. The total value of the coins in the jar is $6.05. How many of each type of coin d
Algebra ->
Customizable Word Problem Solvers
-> Coins
-> SOLUTION: Kevin and randy Muise have a jar containing 53 coins, all of which are eathir quarters or nickels. The total value of the coins in the jar is $6.05. How many of each type of coin d
Log On
Question 1138969: Kevin and randy Muise have a jar containing 53 coins, all of which are eathir quarters or nickels. The total value of the coins in the jar is $6.05. How many of each type of coin do they have? Found 3 solutions by ikleyn, rothauserc, greenestamps:Answer by ikleyn(52908) (Show Source):
Let Q be the number of quarters - then the number of nickels is (53-Q).
The "money" equation is
5*(53-Q) + 25Q = 605, or
5*53 - 5Q + 25Q = 605
20Q = 605 - 5*53
Q = = 17.
ANSWER. 17 quarters and 53 - 17 = 36 nickels.
CHECK. 17*25 + 36*5 = 605 cents. ! Correct !
You will find there the lessons for all levels - from introductory to advanced,
and for all methods used - from one equation to two equations and even without equations.
A convenient place to quickly observe these lessons from a "bird flight height" (a top view) is the last lesson in the list.
Read them and become an expert in solution of coin problems.
Pay special attention to lessons marked (*) in the list.
The lesson (**) is specially devoted to these two personages, Kevin and Randy Muise.
You can put this solution on YOUR website! let x be the number of quarters and y be the number of nickels
:
1) x + y = 53
:
2) 0.25x + 0.05y = 6.05
:
solve equation 1 for y
:
y = 53 - x
:
substitute for y in equation 2
:
0.25x + 0.05(53 - x) = 6.05
:
0.25x + 2.65 - 0.05x = 6.05
:
0.20x = 3.40
:
x = 17
:
y = 53 - 17 = 36
:
********************************************
there are 17 quarters and 36 nickels
:
check answer with equation 2
:
0.25(17) +0.05(36) = 6.05
:
4.25 + 1.80 = 6.05
:
6.05 = 6.05
:
answer checks
*******************************************
:
If you don't need a formal algebraic solution to a problem like this, here is a quick way to get the answer with logical reasoning and some mental arithmetic.
(1) If all 53 coins were nickels; the total value would be 53*$0.05 = $2.65. That's $3.40 short of the actual total of $6.05.
(2) The difference between the value of each quarter and each nickel is 20 cents.
(3) So to make up those additional $3.40 (340 cents), the number of quarters must be 340/20 = 17.