SOLUTION: multiply (m^2+1)(m^4-m^2+1)

Algebra ->  Polynomials-and-rational-expressions -> SOLUTION: multiply (m^2+1)(m^4-m^2+1)      Log On


   



Question 1129022: multiply

(m^2+1)(m^4-m^2+1)

Found 2 solutions by josgarithmetic, addingup:
Answer by josgarithmetic(39618) About Me  (Show Source):
You can put this solution on YOUR website!
Use a lattice arrangement unless you want to use Distributive Property.
        |     m^2         1
----------------------------------
        |
m^4     |     m^6        m^4
        |
-m^2    |     -m^4      -m^2
        |
1       |      m^2       1



highlight%28m%5E6%2B1%29

Answer by addingup(3677) About Me  (Show Source):
You can put this solution on YOUR website!
FOIL: First, Outer, Inner, Last
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(m^2+1)(m^4-m^2+1)
(1 + m^2)(1 + -1m^2 + m^4)
distribute the terms of the first equation over the second equation:
(1(1 + -1m2 + m4) + m2(1 + -1m2 + m4))
(1 + -1m^2 + 1m^4 + (1m^2 + -1m^4 + m^6))
Too messy. Reorder the terms and combine:
(1 + -1m^2 + 1m^2 + 1m^4 + -1m^4 + m^6)
(1 + 1m^4 + -1m^4 + m^6)
(1 + 0 + m^6)
1 + m^6
m^6 + 1 <-- this is your answer