SOLUTION: Let f(x)=x^2, g(x)=2x-3 a. Find (f+g)(2)=5 b. Find (f+g)(x)=x^2+2x-3 c. Find the domain of (f/g)(x): x does not equals 3/2 d. Find the range of f+g=? e. Find (f/g)(x)=x^2/2x-3

Algebra ->  Coordinate-system -> SOLUTION: Let f(x)=x^2, g(x)=2x-3 a. Find (f+g)(2)=5 b. Find (f+g)(x)=x^2+2x-3 c. Find the domain of (f/g)(x): x does not equals 3/2 d. Find the range of f+g=? e. Find (f/g)(x)=x^2/2x-3      Log On


   



Question 1128439: Let f(x)=x^2, g(x)=2x-3
a. Find (f+g)(2)=5
b. Find (f+g)(x)=x^2+2x-3
c. Find the domain of (f/g)(x): x does not equals 3/2
d. Find the range of f+g=?
e. Find (f/g)(x)=x^2/2x-3
Can you check my answers? Thank you!!!

Answer by josgarithmetic(39621) About Me  (Show Source):
You can put this solution on YOUR website!
?
b.
----------------------------
Find (f+g)(x)=x^2+2x-3
----------------------------
?


f%2Bg=x%5E2%2B2x-3
Yes because that is the sum of f and g; the meaning of (f+g)(x).

The RANGE for %28f%2Bg%29%28x%29=x%5E2%2B2x-3 ?
The function is a polynomial, and all real values for x are allowed (domain).
The function is a parabola with a minimum point vertex.
x%5E2%2B2x%2B1-1-3
x%5E2%2B2x%2B1-4
%28x%2B1%29%5E2-4
Vertex, a minimum point, is (-1,-4).

RANGE: The real numbers greater than or equal to negative four.