Question 1123424:  find the gcd of 3+4i and 4+3i in the ring Z[i] 
 Answer by rothauserc(4718)      (Show Source): 
You can  put this solution on YOUR website! look at the norms 
: 
N(3+4i) = 9 + 16 = 25 
: 
N(4+3i) = 16 + 9 = 25 
: 
the primes dividing each have to divide the rational prime 5, since 5^2 = 25 
: 
these are (2+i), (2-i) 
: 
check if (2+i) divides (3+4i) 
: 
(3+4i)/(2+i) = (3+4i)(2-i)/(2+i)(2-i) = (10+5i)/5 
: 
so (2+i) divides (3+4i) 
: 
now check if (2+i) divides (4+3i) 
: 
(4+3i)/(2+i) = (4+3i)(2-i)/(2+i)(2-i) = (11+2i)/5 
: 
(2+i) does not divide (4+3i) and it follow that (2-i) divides (4+3i) 
: 
check if (2-i) divides (3+4i) 
: 
(3+4i)/(2-i) = (3+4i)(2+i)/(2-i)(2+i) = (2+8i)/5 
: 
(2-i) does not divide (3+4i) 
: 
therefore we can conclude that the gcd is 1 
: 
   
  | 
 
  
 
 |   
 
 |