Question 1122915: The side length of a square starts at 0 cm and then begins increasing at a constant rate of 9 cm per second.
a. Write a formula that expresses the side length of the square in cm, s
,in terms of the number of seconds t since the square started growing.
s=
b Write a formula that expresses the area of the square in cm2, A, in terms of the side length of the square in cm, s.
A=
c. Write a formula that expresses the area of the square in cm2, A, in terms of the number of seconds t since the square started growing.
A=
d. Suppose the function f determines the area of the square in cm2 given a number of seconds t since the square started growing. Write a function formula for f.
f(t)
Answer by Boreal(15235) (Show Source):
You can put this solution on YOUR website! s=9t, where t=seconds, and units are cm.
A=s^2
A=81t^2
at 1 second, 81 cm^2
2--324 cm^2
3--729 cm^2
4--1296 cm^2
f(t)=[9^2(t+1)^2-t^2]
This is f(t)=81 (2t+1)
so at 3 seconds 4 seconds will be 81(7) or 567 cm^2, 1296-729.
|
|
|