| 
 
 
 
Question 1120517:  For what values of m is the line y=mx,  a tangent to the parabola y= x^2 - 8x + 25? Thank you :) 
 Answer by rothauserc(4718)      (Show Source): 
You can  put this solution on YOUR website! y = f(x) = x^2 -8x +25 
: 
let (a,f(a)) be a point on f(x) 
: 
the tangent line at (a,f(a)) is 
: 
y = f'(a)(x-a)+f(a) 
: 
f'(x) = 2x -8, f(a) = a^2 -8a +25 
: 
f'(a) = 2a -8 
: 
y = 2a -8(x-a) +a^2 -8a +25 
: 
y = -a^2 +2ax -8x +25 
: 
we want y = mx, then 
: 
-a^2 +25 = 0 
: 
a^2 = 25 
: 
a = 5 or -5 
: 
m = f'(a) = 2a -8 
: 
m = 2 or -18 
:
 
 
  | 
 
  
 
 |   
 
 |   
 |  |