SOLUTION: (x^4 + 2xi) - (3x^2 + yi) = (3 - 5i) + (1 +2yi)

Algebra ->  Complex Numbers Imaginary Numbers Solvers and Lesson -> SOLUTION: (x^4 + 2xi) - (3x^2 + yi) = (3 - 5i) + (1 +2yi)      Log On


   



Question 1117499: (x^4 + 2xi) - (3x^2 + yi) = (3 - 5i) + (1 +2yi)
Found 2 solutions by stanbon, greenestamps:
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
(x^4 + 2xi) - (3x^2 + yi) = (3 - 5i) + (1 +2yi)
-------
x^4-3x^2 + (2x-y)i = (3+1) - (5-2y)i
---------
x^4-3x^2 - 4 = (y-2x+2y-5)i
--------
(x^2-4)(x^2+1) = (3y-2x-5)i
--------
Not sure what your final "answer" might look like.
------
Cheers,
Stan H.
------

Answer by greenestamps(13200) About Me  (Show Source):
You can put this solution on YOUR website!


Equate the real and imaginary parts of the equation....

%28x%5E4+%2B+2xi%29+-+%283x%5E2+%2B+yi%29+=+%283+-+5i%29+%2B+%281+%2B2yi%29

x%5E4-3x%5E2+=+4; 2x-y+=+-5%2B2y

Solve the equation for the real parts to find the value(s) of x:

x%5E4-3x%5E2-4+=+0
%28x%5E2-4%29%28x%5E2%2B1%29+=+0

There are 4 values for x: 2, -2, i, and -i.

Solve the equation for the imaginary parts to find the corresponding values of y:

2x-y+=+-5%2B2y

3y+=+2x%2B5

y+=+%282x%2B5%29%2F3

4 solutions:
(1) x = 2; y = (4+5)/3 = 3
(2) x = -2' y = (-4+5)/3 = 1/3
(3) x = i; y = (2i+5)/3
(4) x = -i; y = (-2i+5)/3