| 
 
 
 
Question 1116981:  Given the lines 3x-2y-24=0 and 4x+7y=-26 
Find the point on the y axis that is collinear with P(4,-6), if the line has a gradient of 2 
 Answer by Theo(13342)      (Show Source): 
You can  put this solution on YOUR website! it appears that what you are looking for is the equation of the line that has a slope of 2 that goes through the point (4,-6).
 
 
the slope intercept form of the equation of a line is y = mx + b
 
 
m is the slope and b is the y-intercept.
 
 
the slope is 2, therefore the equation becomes y = 2x + b.
 
 
to find b, replace x and y with the value of one of the points on the line and solve for b.
 
 
your equation becomes -6 = 2*4 + b
 
 
solve for b to get b = -6 - 8 = -14.
 
 
the y-intercept is the value of y when x is equal to 0.
 
 
that's the point where the line that is co-linear with (4,-6) meets the y-axis if the line has a gradient of 2 (gradient = slope).
 
 
your point is therefore (0,-14).
 
 
in my view, the other two equations are superfluous to the problem.
 
 
as it turns out, however, ths point (4,-6) is the intersection of the line formed by those equations.
 
 
the following graph shows you what i mean.
 
 
the line with the gradient of 2 is the green line.
 
 
 
 
 
 
 
  | 
 
  
 
 |   
 
 |   
 |  |