SOLUTION: ∠A and ∠B\angle B∠B are vertical angles. If m∠A=(x+12)∘\angle A=(x+12)^{\circ}∠A=(x+12)
​∘
​​ and m∠B=(2x+8)W
Algebra ->
Angles
-> SOLUTION: ∠A and ∠B\angle B∠B are vertical angles. If m∠A=(x+12)∘\angle A=(x+12)^{\circ}∠A=(x+12)
​∘
​​ and m∠B=(2x+8)W
Log On
Question 1116548: ∠A and ∠B\angle B∠B are vertical angles. If m∠A=(x+12)∘\angle A=(x+12)^{\circ}∠A=(x+12)
∘
and m∠B=(2x+8)∘\angle B=(2x+8)^{\circ}∠B=(2x+8)
∘
, then find the measure of ∠B\angle B∠B.
You can put this solution on YOUR website! ----
∠A and ∠B\angle B∠B are vertical angles. If m∠A=(x+12)∘\angle A=(x+12)^{\circ}∠A=(x+12)
∘
and m∠B=(2x+8)∘\angle B=(2x+8)^{\circ}∠B=(2x+8)
∘
, then find the measure of ∠B\angle B∠B.
----
If you are saying that measure of angle A is x+12 degrees and measure of angle B is 2x+8 degrees, and that these two angles are vertical angles, then:
Vertical Angles Are Congruent
and , which you easily solve.