SOLUTION: ∠A and ∠B\angle B∠B are vertical angles. If m∠A=(x+12)∘\angle A=(x+12)^{\circ}∠A=(x+12) ​∘ ​​ and m∠B=(2x+8)&#87

Algebra ->  Angles -> SOLUTION: ∠A and ∠B\angle B∠B are vertical angles. If m∠A=(x+12)∘\angle A=(x+12)^{\circ}∠A=(x+12) ​∘ ​​ and m∠B=(2x+8)&#87      Log On


   



Question 1116548: ∠A and ∠B\angle B∠B are vertical angles. If m∠A=(x+12)∘\angle A=(x+12)^{\circ}∠A=(x+12)
​∘
​​ and m∠B=(2x+8)∘\angle B=(2x+8)^{\circ}∠B=(2x+8)
​∘
​​, then find the measure of ∠B\angle B∠B.

Answer by josgarithmetic(39617) About Me  (Show Source):
You can put this solution on YOUR website!
----
∠A and ∠B\angle B∠B are vertical angles. If m∠A=(x+12)∘\angle A=(x+12)^{\circ}∠A=(x+12)
​∘
​​ and m∠B=(2x+8)∘\angle B=(2x+8)^{\circ}∠B=(2x+8)
​∘
​​, then find the measure of ∠B\angle B∠B.
----

If you are saying that measure of angle A is x+12 degrees and measure of angle B is 2x+8 degrees, and that these two angles are vertical angles, then:

Vertical Angles Are Congruent
and
x%2B12=2x%2B8, which you easily solve.