Question 1116348:  Please need assistance
 
 
 
1) Consider the function f (x) = x square - 4x cube 
(a) Find the stationary points of  . 
(b) Use the First Derivative Test to determine any local maximum or local minimum of  .
 
 
 Answer by rothauserc(4718)      (Show Source): 
You can  put this solution on YOUR website! f(x) = x^2 - 4x^3 
: 
the first derivative f'(x) 
: 
f'(x) = 2x -12x^2 
: 
to find stationary points set f'(x) = 0 
: 
2x -12x^2 = 0 
: 
12x^2 -2x = 0 
: 
x^2 -x/6 = 0 
: 
complete the square 
: 
x^2 -x/6 +1/144 = 1/144 
: 
(x -1/12)^2 = 1/144 
: 
x -1/12 = sqrt(1/144) 
: 
x = 1/12 +1/12 = 1/6 
x = 1/12 -1/12 = 0 
: 
f(1/6) = (1/6)^2 - 4(1/6)^3 
: 
f(1/6) = (1/36) -4(1/216) = 6/216 -(4/216) = 2/216 = 1/108 
: 
f(0) = 0^2 -4(0)^3 = 0 
: 
************************************************ 
1.a stationary points are (0,0) and (1/6, 1/108) 
************************************************ 
: 
1.b the second derivative is used to determine local maxima and local minima 
: 
f''(x) = 2 -24x 
: 
The sign of the second derivative at the stationary point is positive for a local minimum, and negative for a local maximum.  
: 
f''(0) = 2 and f''(1/6) = 2 -4 = -2, therefore 
: 
************************************************************ 
(0,0) is a local minimum and (1/6, 1/108) is a local maximum 
************************************************************ 
:
 
 
  | 
 
  
 
 |   
 
 |