SOLUTION: Proving identities.
How do I prove that:
i) tanē(x) - sinē(x) = tanē(x) sinē(x)
ii) (1+ cos(x) + cos(2x))/ (sin(x) + sin(2x)) = cot (x)
I tried question 1 and i got stuck at
Algebra ->
Trigonometry-basics
-> SOLUTION: Proving identities.
How do I prove that:
i) tanē(x) - sinē(x) = tanē(x) sinē(x)
ii) (1+ cos(x) + cos(2x))/ (sin(x) + sin(2x)) = cot (x)
I tried question 1 and i got stuck at
Log On
i) tanē(x) - sinē(x) = tanē(x) sinē(x)
change tanē(x) to sinē(x)/cosē(x)
Get LCD of cosē(x)
Factor out sinē(x) on top:
Replace 1-cosē(x) by sinē(x)
Break into a product:
Replace by
Turn backward
-----------------------------
ii)
Use identities for cos(2x) and sin(2x)
Factor out common factors on top and bottom:
Edwin