.
 =
 =  ,           (1)
,           (1)
 =
 =  .          (2)
================>
5*(K-38) = 2S,        (3)
13K = 8*(S-38).       (4)
================>
 5K - 2S =  5*38,     (5)
13K - 8S = -8*38.     (6)
Multiply eq(5) by 4 (both sides). The modified system is
20K - 8S = 20*38,     (7)
13K - 8S = -8*38.     (8)
Now subtract eq(7) from eq(8) (both sides). You will get
20K - 13K = 20*38 - (-8)*38,   or
7K = 20*38 + 8*38 = 28*38  ====>  K =
.          (2)
================>
5*(K-38) = 2S,        (3)
13K = 8*(S-38).       (4)
================>
 5K - 2S =  5*38,     (5)
13K - 8S = -8*38.     (6)
Multiply eq(5) by 4 (both sides). The modified system is
20K - 8S = 20*38,     (7)
13K - 8S = -8*38.     (8)
Now subtract eq(7) from eq(8) (both sides). You will get
20K - 13K = 20*38 - (-8)*38,   or
7K = 20*38 + 8*38 = 28*38  ====>  K =  = 4*38 = 152.
Then from (5),  2S = 5K - 2*38 = 5*152 - 2*38 = 684  ====>  S =
 = 4*38 = 152.
Then from (5),  2S = 5K - 2*38 = 5*152 - 2*38 = 684  ====>  S =  = 342.
Answer.  K = 152,  S = 342.
 = 342.
Answer.  K = 152,  S = 342.