SOLUTION: complete the proof. given:isosceles triangle MNP with vertex P; isosceles triangle MNQ with vertex Q prove: triangle MQP is congruent to triangle NQP
Algebra ->
Geometry-proofs
-> SOLUTION: complete the proof. given:isosceles triangle MNP with vertex P; isosceles triangle MNQ with vertex Q prove: triangle MQP is congruent to triangle NQP
Log On
Question 1099252: complete the proof. given:isosceles triangle MNP with vertex P; isosceles triangle MNQ with vertex Q prove: triangle MQP is congruent to triangle NQP Found 2 solutions by Edwin McCravy, greenestamps:Answer by Edwin McCravy(20060) (Show Source):
Given: ΔMNP, ΔMNQ are isosceles
To prove: ΔMQP ≅ ΔNQP
PM ≅ PN Legs of isosceles ΔMNP are ≅
∠PMN ≅ ∠PNM Base angles of isosceles ΔMNP are ≅
∠QMN ≅ ∠QNM Base angles of isosceles ΔMNQ are ≅
∠PMN+∠QMN ≅ ∠PNM+∠QNM ≅∠s added to ≅∠s are ≅
∠PMQ ≅ ∠PNQ A whole is equal to the sum of its parts
QM ≅ QN Legs of isosceles ΔMNQ are ≅
ΔMQP ≅ ΔNQP SAS
-------------------------------------
However there is another case to prove, when Q is on the
same side of MN as P. This case:
In this case, the main difference is that you'll need to
subtract angles instead of adding them in the 4th step.
Edwin