SOLUTION: 2. An envelope contains 26 money bills in $500 and $1,000 denominations. The amount of $500 bills is 30% of the total amount of money in the envelope. How many bills of each denomi
Algebra ->
Customizable Word Problem Solvers
-> Finance
-> SOLUTION: 2. An envelope contains 26 money bills in $500 and $1,000 denominations. The amount of $500 bills is 30% of the total amount of money in the envelope. How many bills of each denomi
Log On
Question 1097373: 2. An envelope contains 26 money bills in $500 and $1,000 denominations. The amount of $500 bills is 30% of the total amount of money in the envelope. How many bills of each denomination are in the envelope? Answer by ikleyn(52793) (Show Source):
Let "x" be the number of $500 bills.
Then the number of the $1000 bills is (26-x).
The condition says
500x = 0.3*(500x + 1000*(26-x)).
Simplify and solve for x:
500x = 150x + 7800 - 300x,
500x - 150x + 300x = 7800,
650x = 7800 ====> x = = 12.
Answer. 12 $500 bills and (26-12) = 14 $1000 bills.