+ = 3 ====> + + 1 = 4 ====> = 4 ====> ln(x) + 1 = +/- 2 ====> Case a): ln(x) + 1 = 2 ====> ln(x) = 1 ====> x = e. Case b): ln(x) + 1 = -2 ====> ln(x) = -3 ====> x = . Answer. There are two solutions: x = e and x = .
------ Replacing 2 ln (x) with 3 ln (x) – ln (x) ln (x)[ln (x) + 3] – 1 [ln (x) + 3] = 0 [ln (x) – 1][ln (x) + 3] = 0 ln (x) – 1 = 0 OR ln (x) + 3 = 0 ln (x) = 1 OR ln (x) = - 3