SOLUTION: If positive integers are chosen for r and​ s, with r>​s, then the following set of equations generates a Pythagorean triple​ (a, b,​ c). a=r

Algebra ->  Pythagorean-theorem -> SOLUTION: If positive integers are chosen for r and​ s, with r>​s, then the following set of equations generates a Pythagorean triple​ (a, b,​ c). a=r      Log On


   



Question 1088576: If positive integers are chosen for r and​ s, with r>​s, then the following set of equations generates a Pythagorean triple​ (a, b,​ c).

a=r^2 − s^2 b=2rs c=r^2 + s^2
Use the values r=8 and s=5 to generate a Pythagorean triple.
Thank you for your help!

Answer by MathLover1(20849) About Me  (Show Source):
You can put this solution on YOUR website!

given:
a=r%5E2+-s%5E2
+b=2rs+
c=r%5E2+%2B+s%5E2
Use the values r=8 and s=5 to generate a Pythagorean triple
a=r%5E2+-+s%5E2
a=8%5E2+-+5%5E2
a=64-+25
a=39
+b=2rs+
b=2%2A8%2A5
b=80
c=r%5E2+%2B+s%5E2
c=8%5E2+%2B+5%5E2
c=64%2B25
c=89
a=39, b=80,c=89
check:
c%5E2=a%5E2+%2B+b%5E2
89%5E2=+39%5E2+%2B+80%5E2
7921=1521%2B6400
7921=7921