(cos˛x + sin˛x)/(cot˛x - cosec˛x)
(cos˛x + sin˛x) ÷ (cot˛x - cosec˛x)
Use the identity
cos˛q + sin˛q = 1
1 ÷ (cot˛x - cosec˛x)
Use the identities
cotq = cosq/sinq and
cosecq = 1/sinq
1 ÷ (cos˛x/sin˛x - 1/sin˛x)
1 ÷ (cos˛x - 1)/sin˛x
Use the identity again
cos˛q + sin˛q = 1, solved for cos˛q
cos˛q = 1 - sin˛q
1 ÷ (1 - sin˛x - 1)/sin˛x
1 ÷ -sin˛x/sin˛x
1 ÷ -1
-1
Edwin