Question 1071364:  The first,third and sixth terms of an AP correspond to the first three consecutive terms of an increasing G.P.The first term of each progression is 16,the common difference is d and the common ratio of the G.P is r. 
(I)Write two equations involving d and r 
(ii)find the value of d and r 
Find the sum of the first 20 terms 
(I)the arithmetic progression 
(ii)the geometric progression  
 Answer by KMST(5328)      (Show Source): 
You can  put this solution on YOUR website!   is term number   of the AP 
  is term number   of the GP 
  
(I) "The first, third and sixth terms of an AP correspond to the first three consecutive terms of an increasing G.P." translates into the equationa 
  (1) 
and 
  (2). 
(ii) Adding equation (1) times   plus equation (2) times   we get 
  
Rearranging, 
  
Dividing both sides of the equal sign by   
  
Factoring, we get 
  , 
so the solutions are   and   . 
  would make all terms of the GP equal to   is the only reasonable answer. 
Substituting into equation (1), we get 
  
  
  
  
  
  
  
Find the sum of the first 20 terms: 
(I) The sum of the first   terms of an AP can be calculated as 
  , where   is the first term. 
With   , 
  
  
  
  
  
(ii) The sum of the first   terms of a GP can be calculated as 
  , where   is the first term. 
With   , 
  
  
  
  
  
  
  
We could ask a calculator and get 
  
There is no way to simplify that fraction, and 
as a decimal there would be 15 digits after the decimal point, 
but an approximate value ois   . 
Just for fun, if you like factoring, 
it is also   
  | 
 
  
 
 |   
 
 |