|
Question 1066706: Solve the equation (z-1)^3 + ((i-1)/(i+1))^3 =0
Answer by rothauserc(4718) (Show Source):
You can put this solution on YOUR website! (z - 1)^3 + ((i - 1) / (i + 1))^3 = 0
:
Note that ((i - 1) / (i + 1))^3 = -i, since (i - 1) / (i + 1) = i then i^3 = i^2 * i = -1 * i = -i
:
(z - 1)^3 -i = 0
:
(z - 1)^3 = i
:
Note i = (-i)^3 and let x = (z - 1), then
:
x^3 - (-1)^3 = 0
:
we know that a^3 - b^3 = (a - b) * (a^2 +ab + b^2), then
:
{x−(−i)} * {x^2+x(−i)+(−i)^2} = {x−(−i)} * (x^2−ix−1) = 0
:
If x−(−i) = 0, x = −i, now x = z - 1 then
:
z - 1 = -i
:
**********
z = 1 - i
**********
:
Else x^2 −ix −1 = 0
:
use the quadratic formula
:
x = (i + or - square root(i^2 -(4)(-1))) / 2 = (i + or - square root(3)) / 2)
:
z - 1 = (i + or - square root(3)) / 2)
:
*************************************
z = 1 + (i + or - square root(3)) / 2
*************************************
:
Note there are 3 solutions for z
:
*********************************
z = 1 - i
z = 1 + (i + square root(3)) / 2
z = 1 + (i - square root(3)) / 2
********************************
:
|
|
|
| |